
What is regularization in plain english? - Cross Validated
Is regularization really ever used to reduce underfitting? In my experience, regularization is applied on a complex/sensitive model to reduce complexity/sensitvity, but never on a simple/insensitive model to …
When should I use lasso vs ridge? - Cross Validated
The regularization can also be interpreted as prior in a maximum a posteriori estimation method. Under this interpretation, the ridge and the lasso make different assumptions on the class of linear …
neural networks - L2 Regularization Constant - Cross Validated
Dec 3, 2017 · When implementing a neural net (or other learning algorithm) often we want to regularize our parameters $\\theta_i$ via L2 regularization. We do this usually by adding a regularization term …
L1 & L2 double role in Regularization and Cost functions?
Mar 19, 2023 · Regularization - penalty for the cost function, L1 as Lasso & L2 as Ridge Cost/Loss Function - L1 as MAE (Mean Absolute Error) and L2 as MSE (Mean Square Error) Are [1] and [2] the …
How does regularization reduce overfitting? - Cross Validated
Mar 13, 2015 · A common way to reduce overfitting in a machine learning algorithm is to use a regularization term that penalizes large weights (L2) or non-sparse weights (L1) etc. How can such …
What are Regularities and Regularization? - Cross Validated
Is regularization a way to ensure regularity? i.e. capturing regularities? Why do ensembling methods like dropout, normalization methods all claim to be doing regularization?
Difference between weight decay and L2 regularization
Apr 6, 2025 · I'm reading [Ilya Loshchilov's work] [1] on decoupled weight decay and regularization. The big takeaway seems to be that weight decay and $L^2$ norm regularization are the same for SGD …
regression - Why L1 norm for sparse models - Cross Validated
Apr 20, 2024 · Since the L2-regularization squares the weights, L2(w) will change much more for the same change of weights when we have higher weights. This is why the function is convex when you …
The origin of the term "regularization" - Cross Validated
Dec 10, 2016 · Terms like "regularization of sequences" have been around in mathematics for a long time (certainly since the 1920s), which has a meaning fairly closely related to the regularization of ill …
Impact of L1 and L2 regularisation with cross-entropy loss
May 26, 2022 · Binary cross-entropy is commonly used for binary classification problems. The effect of regularization in this context may include: L1 Regularization: It can still induce sparsity in the weight …